Product Code Database
Example Keywords: playbook -apple $49-150
   » » Wiki: Cellular Respiration
Tag Wiki 'Cellular Respiration'.
Tag

Cellular respiration is the process of biological fuels using an inorganic electron acceptor, such as , to drive production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form. Cellular respiration may be described as a set of reactions and processes that take place in the cells of to transfer chemical energy from to ATP, with the flow of electrons to an electron acceptor, and then release .

If the electron acceptor is oxygen, the process is more specifically known as aerobic cellular respiration. If the electron acceptor is a molecule other than oxygen, this is anaerobic cellular respiration. , which is also an anaerobic process, is not respiration, as no external electron acceptor is involved.

The reactions involved in respiration are , which break large molecules into smaller ones, producing large amounts of energy (ATP). Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are reactions. Although cellular respiration is technically a combustion reaction, it is an unusual one because of the slow, controlled release of energy from the series of reactions.

Nutrients that are commonly used by animal and plant cells in respiration include , and , and the most common is molecular (O2). The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including , locomotion or transportation of molecules across .


Aerobic respiration
Aerobic respiration requires (O2) in order to create ATP. Although , and are consumed as , aerobic respiration is the preferred method of production in , and requires pyruvate be transported by the in order to be by the citric acid cycle. The products of this process are carbon dioxide and water, and the energy transferred is used to make bonds between ADP and a third phosphate group to form ATP (adenosine triphosphate), by substrate-level phosphorylation, NADH and FADH2.
Mass balance of the global reaction:C6H12O6 (s) + 6 O2 (g) → 6 CO2 (g) + 6 H2O (l) + energy
ΔG = −2880 kJ per mol of C6H12O6

The negative ΔG indicates that the reaction is exothermic (exergonic) and can occur spontaneously.

The potential of NADH and FADH2 is converted to more ATP through an electron transport chain with oxygen and protons (hydrogen ions) as the "terminal electron acceptors". Most of the ATP produced by aerobic cellular respiration is made by oxidative phosphorylation. The energy released is used to create a chemiosmotic potential by pumping across a membrane. This potential is then used to drive and produce ATP from ADP and a phosphate group. Biology textbooks often state that 38 ATP molecules can be made per oxidized glucose molecule during cellular respiration (2 from glycolysis, 2 from the Krebs cycle, and about 34 from the electron transport system). However, this maximum yield is never quite reached because of losses due to as well as the cost of moving pyruvate and ADP into the mitochondrial matrix, and current estimates range around 29 to 30 ATP per glucose.

Aerobic metabolism is up to 15 times more efficient than anaerobic metabolism (which yields 2 molecules of ATP per 1 molecule of glucose). However, some anaerobic organisms, such as are able to continue with anaerobic respiration, yielding more ATP by using inorganic molecules other than oxygen as final electron acceptors in the electron transport chain. They share the initial pathway of but aerobic metabolism continues with the Krebs cycle and oxidative phosphorylation. The post-glycolytic reactions take place in the mitochondria in , and in the in .

Although plants are net of carbon dioxide and producers of oxygen via , plant respiration accounts for about half of the CO2 generated annually by terrestrial ecosystems.

(2025). 9780470016176
(2006). 9781402039560, Springer.


Glycolysis
is a metabolic pathway that takes place in the of cells in all living organisms. Glycolysis can be literally translated as "sugar splitting", and occurs regardless of oxygen's presence or absence. The process converts one molecule of into two molecules of (pyruvic acid), generating energy in the form of two net molecules of ATP. Four molecules of ATP per glucose are actually produced, but two are consumed as part of the preparatory phase. The initial of glucose is required to increase the reactivity (decrease its stability) in order for the molecule to be cleaved into two molecules by the enzyme . During the pay-off phase of glycolysis, four groups are transferred to four ADP by substrate-level phosphorylation to make four ATP, and two NADH are also produced during the pay-off phase. The overall reaction can be expressed this way:

Glucose + 2 NAD+ + 2 Pi + 2 ADP → 2 + 2 NADH + 2 ATP + 2 H+ + 2 H2O + energy

Starting with glucose, 1 ATP is used to donate a phosphate to glucose to produce glucose 6-phosphate. Glycogen can be converted into glucose 6-phosphate as well with the help of glycogen phosphorylase. During energy metabolism, glucose 6-phosphate becomes fructose 6-phosphate. An additional ATP is used to phosphorylate fructose 6-phosphate into fructose 1,6-bisphosphate by the help of phosphofructokinase. Fructose 1,6-biphosphate then splits into two phosphorylated molecules with three carbon chains which later degrades into pyruvate.


Oxidative decarboxylation of pyruvate
Pyruvate is oxidized to and CO2 by the pyruvate dehydrogenase complex (PDC). The PDC contains multiple copies of three enzymes and is located in the mitochondria of eukaryotic cells and in the of prokaryotes. In the conversion of pyruvate to acetyl-CoA, one molecule of NADH and one molecule of CO2 is formed.


Citric acid cycle
The citric acid cycle is also called the Krebs cycle or the tricarboxylic acid cycle. When oxygen is present, is produced from the pyruvate molecules created from glycolysis. Once is formed, aerobic or anaerobic respiration can occur. When oxygen is present, the mitochondria will undergo aerobic respiration which leads to the Krebs cycle. However, if oxygen is not present, of the pyruvate molecule will occur. In the presence of oxygen, when acetyl-CoA is produced, the molecule then enters the citric acid cycle (Krebs cycle) inside the mitochondrial matrix, and is oxidized to while at the same time reducing NAD to . NADH can be used by the electron transport chain to create further ATP as part of oxidative phosphorylation. To fully oxidize the equivalent of one glucose molecule, two acetyl-CoA must be metabolized by the Krebs cycle. Two low-energy waste products, H2O and CO2, are created during this cycle.

The citric acid cycle is an 8-step process involving 18 different enzymes and co-enzymes. During the cycle, acetyl-CoA (2 carbons) + (4 carbons) yields (6 carbons), which is rearranged to a more reactive form called (6 carbons). Isocitrate is modified to become α-ketoglutarate (5 carbons), , , , and, finally, .

The net gain from one cycle is 3 NADH and 1 FADH2 as hydrogen (proton plus electron) carrying compounds and 1 high-energy GTP, which may subsequently be used to produce ATP. Thus, the total yield from 1 glucose molecule (2 pyruvate molecules) is 6 NADH, 2 FADH2, and 2 ATP.


Oxidative phosphorylation
In eukaryotes, oxidative phosphorylation occurs in the mitochondrial . It comprises the electron transport chain that establishes a (chemiosmotic potential) across the boundary of the inner membrane by oxidizing the NADH produced from the Krebs cycle. ATP is synthesized by the ATP synthase enzyme when the chemiosmotic gradient is used to drive the phosphorylation of ADP. The electrons are finally transferred to oxygen and, with the addition of two protons, water is formed.


Efficiency of ATP production
The table below describes the reactions involved when one glucose molecule is fully oxidized into carbon dioxide. It is assumed that all the reduced are oxidized by the electron transport chain and used for oxidative phosphorylation.
Glycolysis preparatory phase −2Phosphorylation of glucose and fructose 6-phosphate uses two ATP from the cytoplasm.
Glycolysis pay-off phase 4Substrate-level phosphorylation
2 NADH3 or 5Oxidative phosphorylation: Each NADH produces net 1.5 ATP (instead of usual 2.5) due to NADH transport over the mitochondrial membrane
Oxidative decarboxylation of pyruvate2 NADH5Oxidative phosphorylation
Krebs cycle 2Substrate-level phosphorylation
6 NADH15Oxidative phosphorylation
2 FADH23Oxidative phosphorylation
Total yield30 or 32 ATPFrom the complete oxidation of one glucose molecule to carbon dioxide and oxidation of all the reduced coenzymes.
Although there is a theoretical yield of 38 ATP molecules per glucose during cellular respiration, such conditions are generally not realized because of losses such as the cost of moving pyruvate (from glycolysis), phosphate, and ADP (substrates for ATP synthesis) into the mitochondria. All are actively transported using carriers that utilize the stored energy in the proton electrochemical gradient.
  • Pyruvate is taken up by a specific, low Km transporter to bring it into the mitochondrial matrix for oxidation by the pyruvate dehydrogenase complex.
  • The phosphate carrier (PiC) mediates the electroneutral exchange () of phosphate (; Pi) for OH or of phosphate and protons (H+) across the inner membrane, and the driving force for moving phosphate ions into the mitochondria is the proton motive force.
  • The ATP-ADP translocase (also called adenine nucleotide translocase, ANT) is an and exchanges ADP and ATP across the inner membrane. The driving force is due to the ATP (−4) having a more negative charge than the ADP (−3), and thus it dissipates some of the electrical component of the proton electrochemical gradient.

The outcome of these transport processes using the proton electrochemical gradient is that more than 3 H+ are needed to make 1 ATP. Obviously, this reduces the theoretical efficiency of the whole process and the likely maximum is closer to 28–30 ATP molecules. In practice the efficiency may be even lower because the inner membrane of the mitochondria is slightly leaky to protons. Other factors may also dissipate the proton gradient creating an apparently leaky mitochondria. An uncoupling protein known as is expressed in some cell types and is a channel that can transport protons. When this protein is active in the inner membrane it short circuits the coupling between the electron transport chain and . The potential energy from the proton gradient is not used to make ATP but generates heat. This is particularly important in brown fat thermogenesis of newborn and hibernating mammals.

According to some newer sources, the ATP yield during aerobic respiration is not 36–38, but only about 30–32 ATP molecules / 1 molecule of glucose , because:

  • ATP : NADH+H+ and ATP : FADH2 ratios during the oxidative phosphorylation appear to be not 3 and 2, but 2.5 and 1.5 respectively. Unlike in the substrate-level phosphorylation, the here is difficult to establish.
    • produces 1 ATP / 3 H+. However the exchange of matrix ATP for cytosolic ADP and Pi (antiport with OH or symport with H+) mediated by ATP–ADP translocase and phosphate carrier consumes 1 H+ / 1 ATP as a result of regeneration of the transmembrane potential changed during this transfer, so the net ratio is 1 ATP : 4 H+.
    • The mitochondrial electron transport chain transfers across the inner membrane 10 H+ / 1 NADH+H+ (4 + 2 + 4) or 6 H+ / 1 FADH2 (2 + 4).
So the final stoichiometry is
1 NADH+H+ : 10 H+ : 10/4 ATP = 1 NADH+H+ : 2.5 ATP
1 FADH2 : 6 H+ : 6/4 ATP = 1 FADH2 : 1.5 ATP
  • ATP : NADH+H+ coming from glycolysis ratio during the oxidative phosphorylation is
    • 1.5, as for FADH2, if hydrogen atoms (2H++2e) are transferred from cytosolic NADH+H+ to mitochondrial FAD by the glycerol phosphate shuttle located in the inner mitochondrial membrane.
    • 2.5 in case of malate-aspartate shuttle transferring hydrogen atoms from cytosolic NADH+H+ to mitochondrial NAD+

So finally we have, per molecule of glucose

  • Substrate-level phosphorylation: 2 ATP from + 2 ATP (directly GTP) from
  • Oxidative phosphorylation
    • 2 NADH+H+ from glycolysis: 2 × 1.5 ATP (if glycerol phosphate shuttle transfers hydrogen atoms) or 2 × 2.5 ATP (malate-aspartate shuttle)
    • 2 NADH+H+ from the oxidative decarboxylation of pyruvate and 6 from Krebs cycle: 8 × 2.5 ATP
    • 2 FADH2 from the Krebs cycle: 2 × 1.5 ATP
Altogether this gives 4 + 3 (or 5) + 20 + 3 = 30 (or 32) ATP per molecule of glucose

These figures may still require further tweaking as new structural details become available. The above value of 3 H+ / ATP for the synthase assumes that the synthase translocates 9 protons, and produces 3 ATP, per rotation. The number of protons depends on the number of c subunits in the Fo c-ring, and it is now known that this is 10 in yeast Fo and 8 for vertebrates. Including one H+ for the transport reactions, this means that synthesis of one ATP requires protons in and in . This would imply that in human mitochondria the 10 protons from oxidizing NADH would produce 2.72 ATP (instead of 2.5) and the 6 protons from oxidizing succinate or ubiquinol would produce 1.64 ATP (instead of 1.5). This is consistent with experimental results within the margin of error described in a recent review.

The total ATP yield in ethanol or lactic acid fermentation is only 2 molecules coming from , because pyruvate is not transferred to the and finally oxidized to the carbon dioxide (CO2), but reduced to ethanol or lactic acid in the .

(1995). 9780716720096, W. H. Freeman and Company.


Fermentation
Without oxygen, pyruvate () is not by cellular respiration but undergoes a process of . The pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. This serves the purpose of oxidizing the electron carriers so that they can perform glycolysis again and removing the excess pyruvate. Fermentation oxidizes NADH to NAD+ so it can be re-used in glycolysis. In the absence of oxygen, fermentation prevents the buildup of NADH in the cytoplasm and provides NAD+ for glycolysis. This waste product varies depending on the organism. In skeletal muscles, the waste product is . This type of fermentation is called lactic acid fermentation. In strenuous exercise, when energy demands exceed energy supply, the respiratory chain cannot process all of the hydrogen atoms joined by NADH. During anaerobic glycolysis, NAD+ regenerates when pairs of hydrogen combine with pyruvate to form lactate. Lactate formation is catalyzed by lactate dehydrogenase in a reversible reaction. Lactate can also be used as an indirect precursor for liver glycogen. During recovery, when oxygen becomes available, NAD+ attaches to hydrogen from lactate to form ATP. In yeast, the waste products are and . This type of fermentation is known as alcoholic or ethanol fermentation. The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen.

Fermentation is less efficient at using the energy from glucose: only 2 ATP are produced per glucose, compared to the 38 ATP per glucose nominally produced by aerobic respiration. Glycolytic ATP, however, is produced more quickly. For to continue a rapid growth rate when they are shifted from an aerobic environment to an anaerobic environment, they must increase the rate of the glycolytic reactions. For multicellular organisms, during short bursts of strenuous activity, muscle cells use fermentation to supplement the ATP production from the slower aerobic respiration, so fermentation may be used by a cell even before the oxygen levels are depleted, as is the case in sports that do not require athletes to pace themselves, such as sprinting.


Anaerobic respiration
Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor, such as oxygen, to produce large amounts of energy and drive the bulk production of ATP.

Anaerobic respiration is used by microorganisms, either or , in which neither oxygen (aerobic respiration) nor pyruvate derivatives (fermentation) is the final electron acceptor. Rather, an inorganic acceptor such as (), (), or (S) is used. Such organisms could be found in unusual places such as underwater caves or near hydrothermal vents at the bottom of the ocean., as well as in anoxic soils or sediment in wetland ecosystems.

In July 2019, a scientific study of in Canada discovered sulfur-breathing organisms which live below the surface. These organisms are also remarkable because they consume minerals such as as their food source. World's Oldest Groundwater Supports Life Through Water-Rock Chemistry , July 29, 2019, deepcarbon.net. Strange life-forms found deep in a mine point to vast 'underground Galapagos' , By Corey S. Powell, Sept. 7, 2019, nbcnews.com.


See also
  • Maintenance respiration: maintenance as a functional component of cellular respiration
  • : research tool to explore cellular respiration
  • Tetrazolium chloride: cellular respiration indicator
  • Complex 1: NADH:ubiquinone oxidoreductes


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
3s Time